Not Signed-In
Which clippings match 'Animal Locomotion' keyword pg.1 of 2
11 APRIL 2017

Quadrupedal and skipping motion walk cycles by Felix Sputnik

1
2

TAGS

animal locomotion • animating walking motion • animationanimation referenceanimatoranthropomorphismbodycharacter animationdog • Felix Sputnik • footfall pattern • four feet walking • four legs • four limbs or legs • four-legged animalsgirlhand drawn outlinehuman bodyhuman motioninertiamotion studiesmovementobjects in motion • pronograde posture • quadrupedquadruped animation • quadruped locomotion • quadrupedal manner • quadrupedal movement • quadrupedalism • quadrupeds • skip animation • skipping motion • terrestrial locomotion • vertebrate animals • walk cyclewalking

CONTRIBUTOR

Simon Perkins
13 FEBRUARY 2015

The Creepy Collective Behavior of Boston Dynamics' New Robot Dog

"Robotics company Boston Dynamics has a new four–legged addition to its family: a 160–pound quadruped named Spot...

We know from Spot's reaction to that kick that he can dynamically correct his stability–behavior that's modeled after biological systems. From what Couzin can tell, the robots' collective movement is an organic outgrowth of that self–correction. When the two Spots collide at the 1:25 mark, they're both able to recover quickly from the nudge and continue on their route up the hill. 'But the collision does result in them tending to align with one another (since each pushes against the other),' Couzin wrote in an email. 'That can be an important factor: Simple collisions among individuals can result in collective motion.'

In Couzin's research on locusts, for example, the insects form plagues that move together by just barely avoiding collisions. 'Recently, avoidance has also been shown to allow the humble fruit fly to make effective collective decisions,' he wrote.

It doesn't look like Spot is programmed to work with his twin brothers and sisters–but that doesn't matter if their coordination emerges naturally from the physical rules that govern each individual robot. Clearly, bumping into each other isn't the safest or most efficient way to get your robot army to march in lock step, but it's a good start. And it's relatively easy to imagine several Spots working together in organized ways if the LIDAR sensors fitted on their 'heads' were programmed to create avoidance behaviors–like those locusts–rather than simply reacting to collisions.

Spot's life–like motions are uncanny, but when you add this emergent, collective behavior–which can sometimes be unpredictable–the possibilities get downright scary. Will Spot's group dynamics stop at the point of swarming like locusts? (Ominous.) Will they cluster into self–protecting balls like sardines? (Less so.) Or could they end up as smart and responsive as humans?

Couzin goes so far as to call this bump–and–grind between Spots One and Two a social interaction. 'No matter how primitive, there's no doubt that these interactions could enhance the decision–making capabilities of such robots when they must make their own, autonomous, decisions in an uncertain world,' he wrote. We'll just have to hope that decision–making involves not trampling us when a pack of Spots starts stampeding like wildebeest."

(Neel V. Patel, 11 February 2015 Wired News)

1

TAGS

2015animal locomotionartificial lifeautomataautonomous creature • avoidance behaviour • biological systems • Boston Dynamics • bumping • collective animal behavior • collective behaviour • collective decisions • collective motion • collective movement • collision detection • decision-making capabilitiesdogfruit flyherd • Iain Couzin • LIDARlocomotionmechanical being • nudge • physical rules • quadruped • robot army • robot dog • robot machinesrobotic creaturerobotics • self-correction • social interactionspeculative engineering • Spot (robot) • stabilityswarming • swarming locusts • walkingWired (magazine) • Wired News

CONTRIBUTOR

Simon Perkins
15 APRIL 2014

Computer simulated evolution of virtual creatures (1994)

"This narrated computer animation shows results from a research project involving simulated Darwinian evolutions of virtual block creatures. A population of several hundred creatures is created within a supercomputer, and each creature is tested for their ability to perform a given task, such the ability to swim in a simulated water environment. The successful survive, and their virtual genes containing coded instructions for their growth, are copied, combined, and mutated to make offspring for a new population. The new creatures are again tested, and some may be improvements on their parents. As this cycle of variation and selection continues, creatures with more and more successful behaviors can emerge.

The creatures shown are results the final products from many independent simulations in which they were selected for swimming, walking, jumping, following, and competing for control of a green cube."

(Karl Sims, Internet Archive)

1
2

TAGS

1994animal locomotion • artificial evolution • artificial life • coded instructions • competing for control • computer animationcomputer graphicscomputer simulation • evolutionary biology • evolutionary changesevolutionary determinismevolutionary theoryflappinggenetic artgenetic evolutiongeometric formsInternet Archive • Karl Sims • life formlocomotionmechanical beingmutation • natural selection • new forms of life • offspring • organismprimitive logicresearch projectSIGGRAPHsimulated environment • successful behaviours • supercomputer • survival of the fittestswimmingsynthetic biologysynthetic-life • variation and selection • virtual creatures • virtual genes • walking

CONTRIBUTOR

Simon Perkins
12 JANUARY 2014

Theo Jansen's Strandbeest Evolution

1

CONTRIBUTOR

Simon Perkins
12 JANUARY 2013

Visualising The Future Forms of Life

1
2

TAGS

20123D3D animation3ds Max • 5D Mark II • After Effectsanimal locomotion • Audrius Vaitiekunas • autonomous creature • David Lance • Dovydas Augaitis • Eugenijus Konstantinovas • Jonny Cox • Justas Cekauskas • kinetic sculpture • Laurent Shen • legslocomotion • Matchmover • MD2 • mechanisms • Mocha • primitive logicrobot • Steve Teare • Strandbeestssynthetic-life • The Future Forms of Life • Theo Jansen • Tomas Dobrovolskis • V-Rayvisual effects • Vytautas Jundulas • walking machinewalking sculpturesZBrush

CONTRIBUTOR

Simon Perkins
Sign-In

Sign-In to Folksonomy

Can't access your account?

New to Folksonomy?

Sign-Up or learn more.